Abstract

1. The ATP analog, adenylyl-imidodiphosphate rapidly inhibited CO 2-dependent oxygen evolution by isolated pea chloroplasts. Both α, β- and β, γ-methylene adenosine triphosphate also inhibited oxygen evolution. The inhibition was relieved by ATP but only partially relieved by 3-phosphoglycerate. Oxygen evolution with 3-phosphoglycerate as substrate was inhibited by adenylyl-imidodiphosphate to a lesser extent than CO 2-dependent oxygen evolution. The concentration of adenylyl-imidodiphosphate required for 50% inhibition of CO 2-dependent oxygen evolution was 50 μM. 2. Although non-cyclic photophosphorylation by broken chloroplasts was not significantly affected by adenylyl-imidodiphosphate, electron transport in the absence of ADP was inhibited by adenylyl-imidodiphosphate to the same extent as by ATP, suggesting binding of the ATP analog to the coupling factor of phosphorylation. 3. The endogenous adenine nucleotides of a chloroplast suspension were labelled by incubation with [ 14C]ATP and subsequent washing. Addition of adenylyl-imidodiphosphate to the labelled chloroplasts resulted in a rapid efflux of adenine nucleotides suggesting that the ATP analog was transported into the chloroplasts via the adenine nucleotide translocator. 4. It was concluded that uptake of ATP analogs in exchange for endogenous adenine nucleotides decreased the internal ATP concentration and thus inhibited CO 2 fixation. Oxygen evolution was inhibited to a lesser extent in spinach chloroplasts which apparently have lower rates of adenine nucleotide transport than pea chloroplasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.