Abstract

Root uptake and subsequent translocation of polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs) in 12 agricultural crops were comparatively investigated. All crop plants were exposed hydroponically to a mixture of three kinds of dioxin congeners over 4 d. The root concentration factor (RCF) of dioxin showed a logarithmic correlation with extractable lipid content in plant root. On the assumption that the dioxin escaping via gas phase from nutrient solution in the closed container can evenly diffuse in the air and equally absorb onto the shoot tissues of the dioxin-exposed plant and their nearby blank control plant, the amount of translocated dioxin was estimated by subtracting dioxin content in the shoot tissues of the blank control plant from that of the dioxin-exposed plant, and then the transpiration stream concentration factor (TSCF) of dioxin was calculated. The TSCF values of PCDD/Fs largely varied according to the plant species, and the TSCF values of 2,4,8-TrCDF were a little higher than those for 1,3,6,8-TeCDD expect for zucchini. For 1,3,6,8-TeCDD, zucchini had the highest TSCF value of 0.0089, followed by pumpkin (0.0064) towel gourd (0.0027), and cucumber (0.0010), verifying plants of the genus Cucurbita have the higher abilities of dioxin translocation. The TSCF values of 1,3,6,8-TeCDD for wheat and sorghum were 0.0013 and 0.0012, respectively. For maize, soybean, rice, Chinese cabbage, tomato and garland chrysanthemum, translocation was an insignificant mechanism of dioxin contamination in shoot tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.