Abstract
Streptavidin substituted with mannose residues increased by 20-fold the intracellular concentration of a biotinylated dodecakis(alpha-deoxythymidylate) in macrophages by comparison with the uptake of free oligodeoxynucleotide. Streptavidin, the bacterial homologue of the very basic avidin, which does not contain any carbohydrate moieties and is a neutral protein, was substituted with 12 mannose residues in order to be recognized and internalized by mannose-specific lectins on the surface of macrophages. A 3'-biotinylated and 5'-fluoresceinylated dodecakis (alpha-deoxythymidylate) was synthesized and bound onto mannosylated streptavidin. The conjugate was isolated, and by using flow cytometry, it was shown that the uptake of fluoresceinylated oligodeoxynucleotides bound to mannosylated streptavidin by macrophages is 20-fold higher than that of free oligodeoxynucleotides and that the uptake was competively inhibited by mannosylated serum albumin. Glycosylated streptavidin conjugates recognizing specific membrane lectins on different cells provide the possibility to target biotinylated antisense oligodeoxynucleotides and to increase the biological effect of these chemotherapeutic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.