Abstract

The presence of gamma-aminobutyric acid (GABA)-ergic neuron in guinea pig gallbladder was investigated by measuring GABA contents and glutamate decarboxylase (GAD) activity and by demonstrating the uptake and release of [3H]GABA. GABA and GAD are both present in the gallbladder, and a positive correlation in regional distribution was observed among GABA, GAD, and the number of ganglion cells. The uptake of [3H]GABA by the gallbladder showed two saturable components; a high-affinity component (Km = 23.3 microM, Vmax = 7.63 nmol X g-1 X 10 min-1) and a low-affinity component (Km = 515 microM, Vmax = 57.1 nmol X g-1 X 10 min-1). These high-affinity and low-affinity transport systems corresponded to those obtained in the presence of beta-alanine and L-2,4-diaminobutyric acid, respectively, thereby suggesting the presence of neuronal and nonneuronal GABA transport systems in this tissue. Electrical transmural stimulation produced an increase in [3H]-GABA release from the isolated gallbladder preloaded with [3H]GABA, in the presence of beta-alanine. The stimulation-evoked release of [3H]GABA was prevented by calcium-free medium containing 1 mM EGTA and tetrodotoxin, thereby indicating that the released GABA originates from the nerve terminals. These results provide evidence for the presence of GABA-ergic neurons in the guinea pig gallbladder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call