Abstract

Inorganic construction materials are chiefly envisaged as structural materials. However, they provide unexplored interfaces with characteristic surface chemistry to interact with indoor gases. This work proposes for the first time an insight on uptake abilities of lime-cement-plaster toward indoor pollutant. Because of toxicity and regulation policies, formaldehyde is selected as representative indoor pollutant. This work explores gas-material interaction to elucidate fate of formaldehyde onto lime-cement-plaster and addresses air quality impact. Uptake and fate of formaldehyde onto plaster is addressed using Field and Laboratory Emission Cell coupled with SIFT Mass Spectrometer. The experimental sequence is continuously deployed on 90 days to address realistic and long-term behaviour of formaldehyde uptake. Experimental approach evidences that from 65 to 77% of formaldehyde inlet concentration is continuously taken up on plaster samples throughout experimental sequence. Concomitantly, methanol is observed showing the reactivity of formaldehyde uptake on this material-class. Diffuse Reflectance Infrared Spectroscopy evidences that formaldehyde undergoes heterogeneous Cannizzaro reaction on the plaster surface. This surface reaction proceeds with adsorbed formaldehyde, even in the absence of gaseous pollutant supply. The quantitative balance of the disproportionation process is proposed along the experimental sequence to clarify the fate of formaldehyde encompassing gaseous and adsorbed-phase. The evidenced surface process can impact formaldehyde budget in indoor air, thus relevant parameters are determined to allow further implementation of this reactive contribution to indoor air quality models. This work settles perspectives for passive mitigation of indoor formaldehyde, and points at the need to address reaction products for their indoor air quality impact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.