Abstract

The ciliated protozoan Paramecium incorporates sphingolipids into its cell membranes. However, it is still unclear if these sphingolipids are metabolically synthesized in the cell or if their precursors are taken up from exogenous materials. Here we studied the route of uptake of fluorescence-labeled analogues of ceramide. Fluorescent ceramide was taken up rapidly independent of phagosome formation. Cold treatment caused a decrease in uptake, while reduction in the amount of cytosolic ATP induced by NaN(3) and deoxyglucose resulted in accumulation without internalization of fluorescence at the plasma membrane. These results suggest that uptake of fluorescent ceramide occurs at the plasma membrane, that it is an ATP-dependent process, and that it is not a result of simple diffusion. At first intracellular fluorescence appeared principally in the posterior half of the cell and then spread throughout the cytosol. In particular, a high accumulation of fluorescence occurred in association with acidosomes (late endosome or multivesicular body-like vesicles) that bind to the surface of nascent and young phagosomes. Therefore, in the Paramecium cell a significant proportion of ceramide apparently enters the cell by endocytosis and is quickly relayed to acidosomes along the endocytic pathway before becoming part of the digestive vacuole (phagoacidosome) membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.