Abstract
19F nuclear magnetic resonance (NMR) was utilized to obtain information on the uptake and half-life time of fluoride ion in rats. Changes in tissue fluoride level after acute loading were monitored over time in blood and tissue homogenates obtained from liver and brain. The rate of fluoride elimination from various tissues was roughly similar, following in all cases a first-order kinetic rate law. The F − concentration in brain was about 20% of that found in liver, indicating a reduced fluoride diffusion across the blood-brain barrier. In vivo F − spectra were obtained in rat brain in few minutes with a good signal-to-noise ratio; this confirms the possibility of extending the use of F − as a probe of biomolecules to in vivo applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.