Abstract

Sphingomyelin, labelled with a fluorescent probe, pyrene, in the fatty acyl residue was associated with fetal calf serum; approx. 80% of the sphingomyelin was found in the low- and high-density lipoproteins. This was added to the growth medium of cultured human skin fibroblasts from normal individuals and a patient with Niemann-Pick disease type A, devoid of acid sphingomyelinase activity. The fluorescent sphingomyelin was taken up by both cell types, but only the former degraded it to produce fluorescent ceramide. Differences between normal and Niemann-Pick cells in sphingomyelin content or ceramide production were observed after several hours uptake. A more pronounced difference was noted when cells were incubated for 1 day with fluorescent sphingomyelin and then for two to three days in medium devoid of this compound. Under these conditions, the fluorescence intensity of the Niemann-Pick cells remained practically constant while that of their normal counterparts was almost completely eliminated from the cells. Comparison of fluorescence intensities of these two cell types could be made directly on aqueous suspensions of whole cells or, alternatively, on their lipid extracts. For evaluation of the degradation of fluorescent sphingomyelin to ceramide within the cells, several procedures were developed for the rapid isolation of the latter compound from the total lipid extract. The results suggest that when associated with the constituents of the fetal calf serum, sphingomyelin is taken up by the cells and transported into the lysosomal compartment where it is degraded to ceramide. Use of the fluorescent derivative of sphingomyelin provided a simple and rapid procedure for following the uptake by and degradation within the cultured cells. It also permitted the establishment of differences in the rates of degradation of the fluorescent sphingomyelin by cells with a normal metabolism and others lacking sphingomyelinase (i.e., Niemann-Pick disease type A cells).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.