Abstract

The accumulation and depuration of Cs in the green mussels (Perna viridis) commonly found in the subtropical and tropical waters were studied under the laboratory conditions using radiotracer techniques. Following an initial rapid sorption onto the mussel's tissues, uptake of Cs exhibited linear patterns over a short exposure time (8 h) at different ambient Cs concentrations. The concentration factor was independent of ambient Cs concentration. The calculated uptake rate and initial sorption constant of Cs were directly proportional to the ambient Cs concentration. The calculated uptake rate constant from the dissolved phase in the mussels was as low as 0.026 l g−1 d−1. Uptake rates of Cs in the mussels were inversely related to the ambient salinity. Uptake increased about twofold when the salinity was reduced from 33 to 15 ppt. The effect of salinity on Cs uptake was primarily due to the change in ambient K+ concentration. The uptake rate decreased in a power function with increasing tissue dry weight of the mussels, although the initial sorption was not related to the mussel's body size. The efflux rate constant of Cs in the mussels was 0.15 to 0.18 d−1, and was the highest recorded to date among different metals in marine bivalves. The efflux rate constant also decreased in a power function with increasing tissue dry weight of mussels. A simple kinetic model predicted that the bioconcentration factor of Cs in the green mussels was 145, which was higher than measurements taken in their temperate counterparts. The bioconcentration factor also decreased in a power function with increasing tissue dry weight of mussels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.