Abstract

Di(2-ethylhexyl) phthalate (DEHP) is regarded as a priority environmental pollutant. This study explored the adsorption and accumulation of DEHP within the ginseng-soil system and the mechanism of DEHP toxicity to ginseng (Panax ginseng C.A. Meyer). Under exposure to 22.10 mg/kg DEHP in soil, DEHP mainly accumulated in ginseng leaves (20.28 mg/kg), stems (4.84 mg/kg) and roots (2.00 mg/kg) after 42 days. The oxidative damage, metabolism, protein express of ginseng were comprehensively measured and analyzed. The results revealed that MDA presented an activation trend in ginseng stems and leaves after 42 days of DEHP exposure, while the opposite trend was observed for POD. Levels of ginsenoside metabolites Rg2, Rg3, Rg5, Rd, Rf and CK decreased in the ginseng rhizosphere exudates under DEHP stress. Further investigations revealed that DEHP disrupts ginsenoside synthesis by inducing glycosyltransferase (GS) and squalene synthase (SS) protein interactions. Molecular docking indicated that DEHP could stably bind to GS and SS by intermolecular forces. These findings provide new information on the ecotoxicological effect of DEHP on ginseng root.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call