Abstract

Proton cyclotron waves (PCWs) can be generated by ion pickup of Martian exospheric particles in the solar wind. The solar wind ion pickup process is highly dependent on the “IMF cone angle” — the angle between the solar wind velocity and the interplanetary magnetic field (IMF), which also plays an important role in the generation of PCWs. Using data from 2.15 Martian years of magnetic field measurements collected by the Mars Atmosphere and Volatile Evolution (MAVEN) mission, we have identified 3307 upstream PCW events. Their event number distribution decreases exponentially with their duration. A statistical investigation of the effects of IMF cone angle on the amplitudes and occurrence rates of PCWs reveals a slight tendency of PCWs’ amplitudes to decrease with increasing IMF cone angle. The relationship between the amplitude and IMF cone angle is weak, with a correlation coefficient r = –0.3. We also investigated the influence of IMF cone angle on the occurrence rate of PCWs and found that their occurrence rate is particularly high for intermediate IMF cone angles (~18°–42°) even though highly oblique IMF orientation occurs most frequently in the upstream region of the Martian bow shock. We also conclude that these variabilities are not artefacts of temporal coverage biases in MAVEN sampling. Our results demonstrate that whereas IMF cone angle strongly influences the occurrence of PCWs, IMF cone angle may also weakly modulate their amplitudes in the upstream region of Mars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.