Abstract

In a hybrid PON/xDSL access network, multiple Customer Premise Equipment (CPE) nodes connect over individual Digital Subscriber Lines (DSLs) to a drop-point device. The drop-point device, which is typically reverse powered from the customer, is co-located with an Optical Network Unit (ONU) of the Passive Optical Network (PON). We demonstrate that the drop-point experiences very high buffer occupancies when no flow control or standard Ethernet PAUSE frame flow control is employed. In order to reduce the buffer occupancies in the drop-point, we introduce two gated flow control protocols that extend the polling-based PON medium access control to the DSL segments between the CPEs and the ONUs. We analyze the timing of the gated flow control mechanisms to specify the latest possible time instant when CPEs can start the DSL upstream transmissions so that the ONU can forward the upstream transmissions at the full PON upstream transmission bit rate. Through extensive simulations for a wide range of bursty traffic models, we find that the gated flow control mechanisms, specifically, the ONU and CPE grant sizing policies, enable effective control of the maximum drop-point buffer occupancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.