Abstract

Photorealistic stylization of 3D scenes aims to generate photorealistic images from arbitrary novel views according to a given style image, while ensuring consistency when rendering video from different viewpoints. Some existing stylization methods using neural radiance fields can effectively predict stylized scenes by combining the features of the style image with multi-view images to train 3D scenes. However, these methods generate novel view images that contain undesirable artifacts. In addition, they cannot achieve universal photorealistic stylization for a 3D scene. Therefore, a stylization image needs to retrain a 3D scene representation network based on a neural radiation field. We propose a novel photorealistic 3D scene stylization transfer framework to address these issues. It can realize photorealistic 3D scene style transfer with a 2D style image for novel view video rendering. We first pre-trained a 2D photorealistic style transfer network, which can satisfy the photorealistic style transfer between any content image and style image. Then, we use voxel features to optimize a 3D scene and obtain the geometric representation of the scene. Finally, we jointly optimize a hypernetwork to realize the photorealistic style transfer of arbitrary style images. In the transfer stage, we use a pre-trained 2D photorealistic network to constrain the photorealistic style of different views and different style images in the 3D scene. The experimental results show that our method not only realizes the 3D photorealistic style transfer of arbitrary style images, but also outperforms the existing methods in terms of visual quality and consistency. Project page:https://semchan.github.io/UPST_NeRF/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.