Abstract

To classify proteins into functional families based on their primary sequences, popular algorithms such as the k-NN-, HMM-, and SVM-based algorithms are often used. For many of these algorithms to perform their tasks, protein sequences need to be properly aligned first. Since the alignment process can be error-prone, protein classification may not be performed very accurately. To improve classification accuracy, we propose an algorithm, called the Unaligned Protein SEquence Classifier (UPSEC), which can perform its tasks without sequence alignment. UPSEC makes use of a probabilistic measure to identify residues that are useful for classification in both positive and negative training samples, and can handle multi-class classification with a single classifier and a single pass through the training data. UPSEC has been tested with real protein data sets. Experimental results show that UPSEC can effectively classify unaligned protein sequences into their corresponding functional families, and the patterns it discovers during the training process can be biologically meaningful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.