Abstract
In recent years machine learning algorithms have been gaining momentum in resolving subsurface flow issues related to hydrocarbon flows, Carbon capture utilization and storage, hydrogen storage, geothermal flows, and enhanced oil recovery. This paper presents and attempts to solve subsurface flow problem using neural upscaling method. The neural upscaling method, described in the present work, is a machine learning approach to calculate effective properties in each grid block for subsurface flow modeling. This method is intended to be more accurate than traditional analytical upscaling methods (which are only accurate for layered or homogeneous media) and numerical upscaling methods (which are more accurate for heterogeneous media but involve higher computational cost and are dependent on boundary conditions). The neural upscaling method is based on learning from a large number of geological realizations, which allows it to account for uncertainty in geology. It is also computationally fast and accurate. The method is demonstrated through a series of 2D test cases, and its accuracy is compared to that of analytical and numerical upscaling methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.