Abstract

Understanding particle transport in porous media is critical in the sustainability of many geotechnical and geoenvironmental infrastructure. To date, the determination of the first-order rate coefficients in the advection–dispersion equation for simulating attachment and detachment of particles in saturated porous media typically has been relied on the result of laboratory-scale experiments. However, to determine attachment and detachment coefficients under varied hydraulic and geochemical variables, this method requires a large experimental matrix because each test provides only one set of attachment and detachment coefficients. The work performed in this study developed a framework to upscale the results obtained in pore-scale modeling to the continuum scale through the use of a pore network model. The developed pore network model incorporated variables of mean particle size, the standard deviation of particle size distribution, and interparticle forces between particles and sand grains. The obtained retention profiles using the pore network model were converted into attachment coefficients in the advection–dispersion equation for long-term and large-scale simulation. Additionally, by tracking individual particles during and after the simulation, the pore network model introduced in this study can also be employed for modeling the clogging phenomenon, as well as fundamental investigation of the impact of particle size distribution on particle retention in the sand medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.