Abstract
Outcrops are valuable for analogous subsurface reservoirs in supplying knowledge of fine-scale spatial heterogeneity pattern and stratification types, which are difficult to obtain from subsurface reservoir cores, well logs or seismic data. For petrophysical properties in a domain where the variations are relatively continuous and not dominated by abrupt contrasts, the spatial heterogeneity pattern can be characterized by a semivariogram model. The outcrop information therefore has the potential to constrain the semivariogram for subsurface reservoir modelling, even though it represents different locations and depths, and the petrophysical properties may differ in magnitude or variance. However, the use of outcrop-derived spatial correlation information for petrophysical property modelling in practice has been challenged by the scale difference between the small support volume of the property measurements from outcrops and the typically much larger grid cells used in reservoir models. With an example of modelling the porosity of an outcrop chalk unit in eastern Denmark, this paper illustrates how the fine-scale spatial correlation information obtained from the sampling of outcrops can be transferred to coarser-scale models of analogue rocks. The workflow can be applied to subsurface reservoirs and ultimately improves the representation of geological patterns in reservoir models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.