Abstract

The present work is a comparative study of the effects of mechanical shear, temperature, and concentration of a chemical agent on the devulcanization process of post-industrial ethylene propylene diene (EPDM) rubber waste. Devulcanization was carried out in a heating press (no shear), an internal mixer (low shear), and a co-rotating twin screw extruder (high shear) at temperatures ranging from 100 to 200 °C. The efficiency of pure dibenzamido diphenyl disulfide (DBD) and a commercial devulcanizing agent, Struktol A89®, containing DBD were studied. Based on the results, the devulcanization process was upscaled from 40 g per batch to a continuous process with a capacity of 270 g/h. The parameters were fine-tuned regarding flow rate, screw speed, and temperature. Blends of virgin rubber (VR) and 25, 50, and 75 wt% recyclates were compared with blends of VR and 25, 50, and 75 wt% of untreated RWP. The quality of the recyclate was determined by rheometer tests, SEM images, TGA, and mechanical properties. The best results were obtained with 2 wt% DBD in the extruder with a temperature profile of 120 to 80 °C, 50 rpm, and 4.5 g per minute (gpm). The tensile strength and strain at break of the recyclate already met the requirements of DIN EN 681-1:2006 for the production of sealing systems. The compression set and Shore A hardness were restored by mixing recyclate with 25 wt% VR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call