Abstract

Summary Compositional flow simulation, which is required for modeling enhanced-oil-recovery (EOR) operations, can be very expensive computationally, particularly when the geological model is highly resolved. It is therefore difficult to apply computational procedures that require large numbers of flow simulations, such as optimization, for EOR processes. In this paper, we develop an accurate and robust upscaling procedure for oil/gas compositional flow simulation. The method requires a global fine-scale compositional simulation, from which we compute the required upscaled parameters and functions associated with each coarse-scale interface or wellblock. These include coarse-scale transmissibilities, upscaled relative permeability functions, and so-called α-factors, which act to capture component flow rates in the oil and gas phases. Specialized near-well treatments for both injection and production wells are introduced. An iterative procedure for optimizing the α-factors is incorporated to further improve coarse-model accuracy. The upscaling methodology is applied to two example cases, a 2D model with eight components and a 3D model with four components, with flow in both cases driven by wells arranged in a five-spot pattern. Numerical results demonstrate that the global compositional upscaling procedure consistently provides very accurate coarse results for both phase and component production rates, at both the field and well level. The robustness of the compositionally upscaled models is assessed by simulating cases with time-varying well bottomhole pressures that are significantly different from those used when the coarse model was constructed. The coarse models are shown to provide accurate predictions in these tests, indicating that the upscaled model is robust with respect to well settings. This suggests that one can use upscaled models generated from our procedure to mitigate computational demands in important applications such as well-control optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.