Abstract

Pichia pastoris is currently one of the most preferred microorganisms for recombinant enzyme production due to its efficient expression system. The advantages include the production of high amounts of recombinant proteins containing the appropriate posttranslational modifications and easy cultivation conditions. α-L-Rhamnosidase is a biotechnologically important enzyme in food and pharmaceutical industry, used for example in debittering of citrus fruit juices, rhamnose pruning from naringin, or enhancement of wine aromas, creating a demand for the production of an active and stable enzyme. The production of recombinant α-L-rhamnosidase cloned in the MutS strain of P. pastoris KM71H was optimized. The encoding gene is located under the control of the AOX promoter, which is induced by methanol whose concentration is instrumental for these strain types. Fermentation was upscaled in bioreactors employing various media and several methanol-feeding strategies. It was found that fed batch with BSM media was more effective compared to BMMH (Buffered Methanol-complex Medium) media due to lower cost and improved biomass formation. In BSM (Basal Salt Medium) medium, the dry cell weight reached approximately 60 g/L, while in BMMH it was only 8.3 g/L, without additional glycerol, which positively influenced the amount of enzyme produced. New methanol feeding strategy, based on the level of dissolved oxygen was developed in this study. This protocol that is entirely independent on methanol monitoring was up scaled to a 19.5-L fermenter with 10-L working volume with the productivity of 13.34 mgprot/L/h and specific activity of α-L-rhamnosidase of 82 U/mg. The simplified fermentation protocol was developed for easy and effective fermentation of P. pastoris MutS based on dissolved oxygen monitoring in the induction phase of an enzyme production.

Highlights

  • Pichia pastoris is a methylotrophic yeast used as an expression host for the production of recombinant proteins

  • The gene encoding for the protein is located under the control of the alcohol oxidase (AOX) promoter, which is induced by methanol and repressed by glycerol

  • Various methanol-feeding strategies were tested for the production of recombinant α-L-rhamnosidase by P. pastoris MutS strain

Read more

Summary

Introduction

Pichia pastoris is a methylotrophic yeast used as an expression host for the production of recombinant proteins. The gene encoding for the protein is located under the control of the alcohol oxidase (AOX) promoter, which is induced by methanol and repressed by glycerol. Methanol is transported and oxidized into formaldehyde with. Since formaldehyde is toxic and higher methanol concentrations retard the growth and biomass yield (Khatri and Hoffmann, 2006) it is important to set the methanol induction properly. P. pastoris expresses recombinant proteins both intracellularly and extracellularly, which simplifies protein isolation from the production media. The concentration of produced proteins is quite high and the posttranslational modifications are superior to those in prokaryotic expression systems (Cereghino et al, 2002)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.