Abstract

Upregulation of xCT, the inducible subunit of a membrane-bound amino acid transporter, replenishes intracellular glutathione stores to maintain cell viability in an environment of oxidative stress. xCT also serves as a fusion-entry receptor for the Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma (KS). Ongoing KSHV replication and infection of new cell targets is important for KS progression, but whether xCT regulation within the tumor microenvironment plays a role in KS pathogenesis has not been determined. Using gene transfer and whole virus infection experiments, we found that KSHV-encoded microRNAs (KSHV miRNAs) upregulate xCT expression by macrophages and endothelial cells, largely through miR-K12-11 suppression of BACH-1—a negative regulator of transcription recognizing antioxidant response elements within gene promoters. Correlative functional studies reveal that upregulation of xCT by KSHV miRNAs increases cell permissiveness for KSHV infection and protects infected cells from death induced by reactive nitrogen species (RNS). Interestingly, KSHV miRNAs simultaneously upregulate macrophage secretion of RNS, and biochemical inhibition of RNS secretion by macrophages significantly reduces their permissiveness for KSHV infection. The clinical relevance of these findings is supported by our demonstration of increased xCT expression within more advanced human KS tumors containing a larger number of KSHV-infected cells. Collectively, these data support a role for KSHV itself in promoting de novo KSHV infection and the survival of KSHV-infected, RNS-secreting cells in the tumor microenvironment through the induction of xCT.

Highlights

  • Patients with immune deficiencies are at risk for lifethreatening illnesses caused by herpesviruses, including the Kaposi’s sarcoma-associated herpesvirus (KSHV)

  • KSHV infection of new cell targets is critical for tumor progression, and a better understanding of how viral receptors on the surface of cells are regulated in the tumor microenvironment may lead to new therapies

  • We show that KSHV miRNAs increase the susceptibility of cells to KSHV infection and protect infected cells from death induced by cancer-promoting reactive nitrogen species (RNS)

Read more

Summary

Introduction

Patients with immune deficiencies are at risk for lifethreatening illnesses caused by herpesviruses, including the Kaposi’s sarcoma-associated herpesvirus (KSHV). The most commonly encountered clinical manifestation of KSHV infection, Kaposi’s sarcoma (KS), represents one of the most common tumors arising in the setting of HIV infection, one of the most common transplant-associated tumors, and a leading cause of morbidity and mortality [5,6,7]. Clinical responses to cytotoxic agents for systemic KS vary widely in published trials, and these agents incur many side effects which may exacerbate or add to those already incurred by antiretroviral or immunosuppressive agents [10,13]. Given these shortcomings of existing therapies, novel targeted strategies are needed for the treatment or prevention of KS

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call