Abstract

Transient receptor potential vanilloid (TRPV) 1 channels function as sensors for a variety of noxious and inflammatory signals, including capsaicin, heat and protons, and are up-regulated under inflammatory conditions. As end-stage kidney disease (ESKD) is associated with chronic inflammation, impaired immunity and depressed lymphocyte numbers, we sought to determine whether altered TRPV1 (and related TRPV2) expression in immune cells might be a contributing factor. TRPV1 and TRPV2 mRNA expression in peripheral blood mononuclear cells (PBMC) was similar in controls and ESKD patients by quantitative real-time RT-PCR. However, using immunocytochemistry, TRPV1-immunoreactivity was significantly higher and TRPV2-immunoreactivity was significantly lower in PBMC from ESKD patients compared to controls. The plant-derived TRPV1 agonists, capsaicin and resiniferatoxin (RTX) and the putative endovanilloid/endocannabinoids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA), induced concentration-dependent death of PBMC from healthy donors with a rank order of potency of RTX > NADA > OLDA >> capsaicin. TRPV1 (5′-iodoresiniferatoxin) and cannabinoid (CB 2; AM630) receptor antagonists blocked the cytotoxic effect of NADA. In subsequent experiments, PBMC from ESKD patients exhibited significantly increased susceptibility to NADA-induced death compared to PBMC from controls. The apparent up-regulation of TRPV1 may be a response to the inflammatory milieu in which PBMC exist in ESKD and may be responsible for the increased susceptibility of these cells to NADA-induced death, providing a possible explanation as to why ESKD patients have reduced lymphocyte counts and impaired immune function. Thus, TRPV1 (and possibly CB 2) antagonists may have potential for the treatment of immune dysfunction in ESKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call