Abstract

Cervical cancer cells were transfected with a newly discovered interleukin (IL)-18 receptor to investigate the effect of endogenous IL-18 on the regulation of immune-related factors such as Fas (CD95/Apo-1)/Fas ligand and intercellular adhesion molecules. Transfection of the IL-18 receptor selectively induced a slight enhancement of the Fas via the up-regulation of intracellular reactive oxygen species and IL-18 in cervical carcinoma C33A cells, whereas there were no effects on the expression of p53, intercellular adhesion molecules-1 and Fas ligand. Neither IL-18 receptor transfection nor recombinant IL-18 enhanced interferon-gamma production in C33A cells. Thus, IL-18 receptor transfection induced IL-18 expression and enhanced intracellular reactive oxygen species and Fas expression in C33A cells in an interferon-gamma-independent pathway. However, treatment with agonistic anti-Fas antibody did not induce the apoptosis of C33A/IL-18 receptor transfectants, suggesting that either reactive oxygen species play a key role in resisting the Fas-induced apoptosis of C33A cells, or Fas was not functional. These results show that C33A/IL-18 receptor cells are resistant to the apoptosis and thus can survive against the immune surveillance and activated immune cells. Our results thus suggest that IL-18 and IL-18 receptor, together, may play a role in immunoregulation or in inflammation by augmenting the levels of IL-18 and reactive oxygen species in C33A cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.