Abstract

IntroductionStudies on the role of programmed death-1(PD-1) and its main ligand (PD-L1) during experimental models of sepsis have shown that the PD-1/PD-L1 pathway plays a pathologic role in altering microbial clearance, the innate inflammatory response and accelerated apoptosis in sepsis. However, the expression of PD-1 and PD-L1 and their role during the development of immune suppression in septic patients have not been elucidated. The present study was designed to determine whether the expression of PD-1 and PD-L1 is upregulated in septic shock patients and to explore the role of this pathway in sepsis-induced immunosuppression.MethodsNineteen septic shock patients and 22 sex-matched and age-matched healthy controls were prospectively enrolled. Apoptosis in lymphocyte subpopulations and PD-1/PD-L1 expression on peripheral T cells, B cells and monocytes were measured using flow cytometry. Apoptosis of T cells induced by TNFα or T-cell receptor ligation in vitro and effects of anti-PD-L1 antibody administration were measured by flow cytometry. CD14+ monocytes of septic shock patients were purified and incubated with either lipopolysaccharide, anti-PD-L1 antibody, isotype antibody, or a combination of lipopolysaccharide and anti-PD-L1 antibody or isotype antibody. Supernatants were harvested to examine production of cytokines by ELISA.ResultsCompared with healthy controls, septic shock induced a marked increase in apoptosis as detected by the annexin-V binding and active caspase-3 on CD4+ T cells, CD8+ T cells and CD19+ B cells. Expression of PD-1 on T cells and of PD-L1 on monocytes was dramatically upregulated in septic shock patients. PD-1/PD-L1 pathway blockade in vitro with anti-PD-L1 antibody decreased apoptosis of T cells induced by TNFα or T-cell receptor ligation. Meanwhile, this blockade potentiated the lipopolysaccharide-induced TNFα and IL-6 production and decreased IL-10 production by monocytes in vitro.ConclusionsThe expression of PD-1 on T cells and PD-L1 on monocytes was upregulated in septic shock patients. The PD-1/PD-L1 pathway might play an essential role in sepsis-induced immunosuppression.

Highlights

  • Studies on the role of programmed death-1(PD-1) and its main ligand (PD-L1) during experimental models of sepsis have shown that the Programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) pathway plays a pathologic role in altering microbial clearance, the innate inflammatory response and accelerated apoptosis in sepsis

  • IL-10 production was decreased significantly as compared with isotype control antibody-treated cells (Figure 4c). These results suggest that PD-1/PD-L1 pathway blockade by anti-PD-L1 antibody improved the function of monocytes isolated from septic patients

  • The current study demonstrates that PD-1 on T cells and PD-L1 on monocytes are upregulated dramatically in a cohort of septic shock patients exhibiting accelerated lymphocyte apoptosis as compared with healthy controls

Read more

Summary

Introduction

Studies on the role of programmed death-1(PD-1) and its main ligand (PD-L1) during experimental models of sepsis have shown that the PD-1/PD-L1 pathway plays a pathologic role in altering microbial clearance, the innate inflammatory response and accelerated apoptosis in sepsis. The present study was designed to determine whether the expression of PD-1 and PD-L1 is upregulated in septic shock patients and to explore the role of this pathway in sepsis-induced immunosuppression. After a short proinflammatory phase, septic patients enter a stage of protracted immunosuppression, which is an important underlying cause of mortality during the late stage of sepsis. This immunosuppression in sepsis is clinically manifest by cutaneous anergy, hypothermia, leucopenia, susceptibility to infection, and failure to clear infection [3,4,5]. Inhibition of lymphocyte apoptosis can improve survival in animal models of sepsis by using selective caspase inhibitors [11,12], by altering proapoptotic/antiapoptotic protein expression [13,14], and by treatment with survival-promoting cytokines such as IL-7 [15] and/or IL-15 [16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call