Abstract

BackgroundPim-3 belongs to the PIM kinase family and plays an important role in promoting inflammation, which is essential in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). MethodsImmunohistochemistry (IHC), western blot, and RT-PCR analyses were performed to assess the expression of Pim-3 in both COPD and healthy lung tissue samples. SMA (Smooth Muscle Actin) and Cyclin D1 expression were detected by IHC. We also constructed animal models for the control, COPD, and Pim-3 inhibition groups, in order to analyze the effects of Pim-3 inhibition on COPD, and the role of Pim-3 in the p38 pathway. ResultsCompared with normal lung tissue, Pim-3 mRNA and protein were up-regulated in COPD tissue. Expression of Cyclin D1 and SMA were also up-regulated in the COPD group. In the animal model experiment, we found that suppression of Pim-3 decreased Pim-3, Cyclin D1, and SMA expression, as well as ameliorated lung damage in COPD patients. The inhibition of Pim-3 also resulted in the suppression of the p38 pathway. ConclusionOur study suggests that up-regulation of Pim-3 successfully accelerated COPD development, and aggravated lung damage. The molecular mechanism of Pim-3 in COPD might be related to the p38 pathway, and is correlated with Cyclin D1 and SMA expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.