Abstract
Traumatic spinal cord injury (SCI) results not only in motor impairment, but also in chronic central neuropathic pain, which often is refractory to conventional treatment approaches. Upregulated expression of sodium channel Nav1.3 has been observed within the spinal dorsal horn neurons after SCI, and appears to contribute to neuronal hyperresponsiveness and pain-related behaviors. In this study we characterized the changes in sodium current properties within dorsal horn neurons after contusive SCI. Four weeks after adult male Sprague-Dawley rats underwent T9 spinal cord contusion injury, when behavioral nociceptive thresholds were decreased to both mechanical and thermal stimuli, whole-cell patch-clamp recordings were performed on acutely dissociated lumbar dorsal horn neurons. The cells demonstrated characteristic fast-activating and fast-inactivating sodium currents. SCI led to a shift of the steady-state activation and inactivation of the sodium current towards more depolarized potentials. The shifted steady-state inactivation shows similarities to that obtained from axotomized dorsal root ganglions, which were shown to upregulate Nav1.3. Small slow depolarizations below action potential threshold produced ramp currents, which were markedly enhanced by SCI (from 182 +/- 41 to 338 +/- 55 pA). The density of the noninactivating persistent sodium current was also significantly enhanced in neurons from SCI animals (from 17.4 +/- 3.2 to 27.7 +/- 4.4 pA/pF at 50-70 ms of depolarization). The increased persistent sodium current and ramp current, which are consistent with upregulation of Nav1.3 within dorsal horn neurons, suggest a basis for the hyperresponsiveness of these neurons following SCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.