Abstract

Overdose of acetaminophen (APAP) is the main reason for acute liver failure. Oxidative stress is associated with hepatotoxicity caused by APAP. Betaine is a methyl donor and S-adenosylmethionine precursor. The present study investigated the effect of betaine and the role of nuclear factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) genes in hepatotoxicity induced by APAP in mice. In this study, male Naval Medical Research Institute (NMRI) mice were treated with 500 mg/kg of betaine for 5 days followed with a single dose of APAP 300 mg/kg on the fifth day. Biochemical, histological, immunohistochemical, Western blot, and real-time polymerase chain reaction (PCR) analyses were then conducted. The results of the present study showed that betaine pretreatment improved hepatotoxicity through the reduction of serum ALT and AST levels and ameliorating histopathological finding. Betaine pretreatment also increased glutathione level and decreased malondialdehyde level. Importantly, the results of immunohistochemical, Western blot and real-time PCR showed that the APAP increased the expression of the genes and proteins of Nrf2 and HO-1. While betaine decreased Nrf2 and HO-1 expression in comparison with the APAP group. The findings of this study demonstrated that the increased expression of Nrf2 and HO-1 genes and proteins by APAP is a compensatory mechanism to combat acute liver toxicity. While the protective effect of betaine against acute liver injury induced by APAP is independent on the Nrf2 and HO-1 genes but occurs via modifying cysteine supply as a precursor of glutathione in the transsulfuration pathway in the liver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call