Abstract

Colorectal carcinoma (CRC) is known as the most common cancer. MicroRNAs (miRNAs) have been proven to have important roles in human carcinogenesis by regulating various target genes. Recently, the downregulation of miR-582-5p had been demonstrated in CRC. However, its function and the underlying mechanism in CRC remains unknown. In this study, we found that miR-582-5p was frequently downregulated in CRC tissues compared with corresponding noncancerous tissues, as well as in CRC cell lines. Transfection with miR-582-5p mimics significantly inhibited CRC cell proliferation, invasion and arrested cell cycle at the G1/S phase, but promoted cell apoptosis. Further analysis demonstrated that miR-582-5p attenuated the expression of RAS-related GTP-binding protein (Rab27a). Luciferase reporter assay confirmed that Rab27a was a target of miR-582-5p. Mechanism analyses revealed that Rab27a overexpression significantly attenuated the inhibitory effect of miR-582-5p on CRC cell growth, invasion and cell cycle progression. Our data suggest that miR-582-5p may function as a tumor suppressor in the development of CRC by targeting Rab27a, indicating a novel therapeutic strategy for patients with CRC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.