Abstract

The development of calcific aortic valve disease (CAVD) is a complex process of ectopic calcification involving various factors that lead to aortic valve stenosis, hemodynamic changes, and, in severe cases, even sudden death. Currently, aortic valve replacement is the only effective method. The osteogenic differentiation of aortic valve interstitial cells (AVICs) is one of the key factors of valve calcification. Emerging evidence suggests that bone morphogenetic protein 2 (BMP2) can induce the proosteogenic activation of AVICs. However, the regulatory mechanism underlying this activation in AVICs is unclear. In the present study, we elucidated through high-throughput RNA sequencing and RT-qPCR that miR-664a-3p was evidently downregulated in the calcific aortic valve. We also proved that miR-664a-3p was involved in regulating osteogenic differentiation in AVICs. Target prediction analysis and dual-luciferase reporter gene assay confirmed that miR-664a-3p is preferentially bound to BMP2. Furthermore, the effect of the miR-664a-3p/BMP2 axis on osteogenic differentiation in AVICs was examined using the gain- and loss-of-function approach. Finally, we constructed a mouse CAVD model and verified the effect of the miR-664a-3p/BMP2 axis on the aortic valve calcification leaflets in vivo. In conclusion, miR-664a-3p regulates osteogenic differentiation in AVICs through negative regulation of BMP2, highlighting that miR-664a-3p may be a potential therapeutic target for CAVD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call