Abstract

The transplacental transfer of maternal antibodies to the fetus is a critical mechanism for infant protection and perinatal disease. Hemolytic disease of the fetus and newborn (HDFN) is a representative fetal disease caused by transplacental transfer of maternal IgG antibodies. However, it is unclear whether placental-related miRNAs are expressed in Rh-HDFN. Through the investigation of the miR-181a-5p and miR-125b-2-3p levels in maternal plasma using qPCR, we found that both miR-181a-5p and miR-125b-2-3p were highly expressed in maternal plasma of newborns with Rh-HDFN compared with healthy controls, indicating the potential roles of these two miRNAs in Rh-HDFN. To demonstrate whether dysregulation of miR-125b-2-3p and miR-181a-5p contributes to Rh-HDFN development, we analyze the placental miRNA-/mRNA sequencing data (GSE73714) using weighted gene coexpression network analysis (WGCNA), miRNA target predictive databases, and DAVID (Database for Annotation, Visualization, and Integrated Discovery). The results showed that miR-125b-2-3p and miR-181a-5p could regulate several biological processes including cytoplasmic microtubule organization and angiogenesis. Moreover, core promoter sequence-specific DNA binding and protein binding were highly enriched molecular functions, indicating the potential roles of transcriptional regulation. Further pathway enrichment showed that miR-181a-5p and miR-125b-2-3p could regulate several biological pathways that were closely related to placental function, including the FoxO signaling pathway, focal adhesion, mTOR signaling pathway, and central carbon metabolism in cancer. In conclusion, the present results first revealed miRNA expression in the maternal circulation of newborns with Rh-HDFN, which could be caused by dysfunction of the placenta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.