Abstract

Spinal cord injury (SCI) is a common disease with high incidence, disability rate and treatment cost. microRNA (miR)-200a is reported to inhibit Keap1 to activate Nrf2 signaling. This study aimed to explore the effects of lentivirus-mediated miR-200a gene-modified bone marrow mesenchymal stem cells (BMSCs) transplantation on the repair of SCI in a rat model. BMSCs were isolated from the bone marrow of Sprague-Dawley rats. MiR-200a targeting to Keap1 was identified by luciferase reporter gene assay. The expressions of Keap1, nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H-dependent quinone oxidoreductase 1 (NQO-1), heme oxygenase-1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC) were detected by Western blotting in SCI rats. The locomotor capacity of the rats was evaluated using the Basso, Beattie, and Bresnahan scale. The levels of malondialdehyde (MDA), activities of superoxide dismutase (SOD), and catalase (CAT) were measured. miR-200a inhibited Keap-1 3' UTR activity in BMSCs. Transplantation of BMSCs with overexpression of miR-200a or si-Keap1 increased locomotor function recovery of rats after SCI, while decreased MDA level, increased SOD, CAT activities, and Nrf2 expression together with its downstream HO-1, NQO1, GCLC protein expressions in SCI rat. These results indicated that overexpressed miR-200a in BMSCs promoted SCI repair, which may be through regulating antioxidative signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.