Abstract

Tumor immunotherapy is a promising strategy to activate the immune system and eliminate tumors. Major histocompatibility complex I (MHC-I) is usually applied to potentiate antigen presentation, but it is associated with upregulation of programmed death ligand 1 (PD-L1) expression, which is unfavorable for activation of immune responses. Moreover, poor permeability of various therapeutic antibodies results in the limited immune response rates of most patients. It is necessary to develop combined small molecule drug delivery systems for simultaneous upregulation of MHC-I expression and downregulation of PD-L1 expression, promoting effective tumor treatment. A moderate dose of doxorubicin hydrochloride (DOX) can induce upregulation of MHC-I expression, while deferasirox (DFX) can inhibit the PI3K-Akt pathway, which potentially downregulates PD-L1 expression. In the present study, we designed a pH-sensitive liposome to incorporate DOX in the hydrophilic cavity and embed DFX in the hydrophobic shell, forming a dual delivery system (DOX-DFXL). In a B16F10 melanoma-bearing mouse model, DOX and DFX were released in acidic tumor microenvironment, which further lead to enhanced antigen presentation and infiltration of T cells into tumor tissues as a result of tumor remission. This codelivery system holds great potential for clinical applications of tumor immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call