Abstract

BackgroundLeukocyte immunoglobulin-like receptor B4 (LILRB4) is one of the inhibitory receptors in various types of immune cells including macrophages. Previous reports suggested that LILRB4 could be involved in a negative feedback system to prevent excessive inflammatory responses. However, its role has been unclear in chronic obstructive pulmonary disease (COPD), in which macrophages play a crucial role in the pathogenesis. In this study, we aimed to examine the changes of LILRB4 on macrophages both in the lung specimens of COPD patients and the lungs of a mouse emphysema model. We then tried to compare the differences in both inflammation and emphysematous changes of the model between wild-type and LILRB4-deficient mice in order to elucidate the role of LILRB4 in the pathogenesis of COPD.MethodsWe prepared single-cell suspensions of resected lung specimens of never-smokers (n = 21), non-COPD smokers (n = 16), and COPD patients (n = 14). The identification of LILRB4-expressing cells and the level of LILRB4 expression were evaluated by flow cytometry. We analyzed the relationships between the LILRB4 expression and clinical characteristics including respiratory function. In the experiments using an elastase-induced mouse model of emphysema, we also analyzed the LILRB4 expression on lung macrophages. We compared inflammatory cell accumulation and emphysematous changes induced by elastase instillation between wild-type and LILRB4-deficient mice.ResultsThe levels of surface expression of LILRB4 are relatively high on monocyte linage cells including macrophages in the human lungs. The percentage of LILRB4+ cells in lung interstitial macrophages was increased in COPD patients compared to non-COPD smokers (p = 0.018) and correlated with the severity of emphysematous lesions detected by CT scan (rs = 0.559, p < 0.001), whereas the amount of smoking showed no correlation with LILRB4 expression. Increased LILRB4 on interstitial macrophages was also observed in elastase-treated mice (p = 0.008). LILRB4-deficient mice showed severer emphysematous lesions with increased MMP-12 expression in the model.ConclusionsLILRB4 on interstitial macrophages was upregulated both in human COPD lungs and in a mouse model of emphysema. This upregulated LILRB4 may have a protective effect against emphysema formation, possibly through decreasing MMP-12 expression in the lungs.

Highlights

  • Leukocyte immunoglobulin-like receptor B4 (LILRB4) is one of the inhibitory receptors in various types of immune cells including macrophages

  • For further understanding of the pathogenesis of chronic inflammation in chronic obstructive pulmonary disease (COPD), we focused on leukocyte immunoglobulin-like receptor B4 (LILRB4) in this study

  • LILRB4 expression on interstitial macrophages was elevated in COPD patients Because which types of leukocytes expressed LILRB4 in human lung were not clarified, we first examined the expression of LILRB4 on each type of leukocyte in single cell suspensions of normal lung tissue from the patients who received pneumonectomy for lung cancer

Read more

Summary

Introduction

Leukocyte immunoglobulin-like receptor B4 (LILRB4) is one of the inhibitory receptors in various types of immune cells including macrophages. We aimed to examine the changes of LILRB4 on macrophages both in the lung specimens of COPD patients and the lungs of a mouse emphysema model. We tried to compare the differences in both inflammation and emphysematous changes of the model between wild-type and LILRB4-deficient mice in order to elucidate the role of LILRB4 in the pathogenesis of COPD. Pharmacological reagents, including bronchodilators and inhaled corticosteroids, are used to reduce symptoms, prevent exacerbations, and improve exercise tolerance and the health status of COPD patients [3]. Inhaled corticosteroids, combined with bronchodilators, are used for COPD patients as an anti-inflammatory therapy [3].

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.