Abstract

Histone H3K27me3 demethylase KDM6B (also known as Jumonji domain-containing protein D3, JMJD3) plays vital roles in the etiology of inflammatory responses; however, little is known about the role of KDM6B in neuroinflammation-induced anxiety-like behavior. The present study aimed to investigate the potential role of KDM6B in lipopolysaccharide (LPS)-induced anxiety-like behavior and to evaluate whether it is associated with the modulation of vestigial-like family member 4 (VGLL4). The elevated plus maze, light-dark box, and open-field test were performed to test the anxiety-like behavior induced by LPS in C57BL/6 J male mice. Levels of relative protein expression in the hippocampus were quantified by western blotting. KDM6B inhibitor GSK-J4 and microglia inhibitor minocycline as well as adeno-associated virus of Vgll4 shRNA were used to explore the underlying mechanisms. We found that KDM6B, VGLL4, interleukin-1β (IL-1β), and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) protein levels were increased in LPS-dose dependent manner in the hippocampus but not in prefrontal cortex. GSK-J4 treatment attenuated LPS-induced VGLL4, the signal transducer and activator of transcription 3 (STAT3), IL-1β and Iba-1 upregulation and anxiety-like behavior. Knockdown VGLL4 with Vgll4 shRNA prevented the increase of anxiety-like behavior and levels of STAT3, IL-1β, and Iba-1 expression in the hippocampus of LPS-treated mice. Moreover, minocycline, an inhibitor of microglia treatment blunted LPS-induced anxiety-like behavior. Collectively, these results demonstrate that the induction of neuroinflammation by LPS promotes KDM6B activation in the hippocampus, and LPS-induced anxiety-like behavior is associated with upregulation of VGLL4 by KDM6B in the hippocampus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call