Abstract

BackgroundAngiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF) has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC).MethodologyVEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors.Principal FindingsC1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1) the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55) acting as a bacterial receptor, and (2) the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways.ConclusionsResults demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro-inflammatory E. coli strain and angiogenesis which appeared recently as a novel component of IBD pathogenesis.

Highlights

  • The two major forms of inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC) have been defined on the basis of clinical, endoscopic and radiological criteria

  • In this study we show that Afa/Dr DAEC C1845 bacteria, following the recognition of DAF by the F1845 adhesin, activate Akt- and the extracellular signal-regulated kinase (Erk)-signaling pathways through a Src protein kinase-dependent mechanism, and induce a gene transcription program leading to the up-regulation of vascular endothelial growth factor (VEGF) expression

  • The ultimate demonstration that a link between IBD and angiogenesis exits arise from two recent observations: vascular remodeling and functionally active angiogenesis are associated with IBD [52] and the angiogenic blockade, using the anti-angiogenic peptide ATN-61, has decreased angiogenesis in two colitis-associated mice models [19]

Read more

Summary

Introduction

The two major forms of inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC) have been defined on the basis of clinical, endoscopic and radiological criteria. An adherent-invasive E. coli (AIEC) strain has been isolated from neoterminal ileum of CD patients [11,12,13] Their virulence properties designate AIEC as a possible pathogen potentially able to induce persistent intestinal inflammation, by crossing and breaching the intestinal barrier, moving to deep tissues, promoting granulomas, continuously activating macrophages and producing inflammatory responses [14,15,16,17,18]. Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the upregulation of bioactive VEGF in cultured human intestinal cells. These results suggest a link between an entero-adherent, pro-inflammatory E. coli strain and angiogenesis which appeared recently as a novel component of IBD pathogenesis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call