Abstract

When the inducible form of nitric oxide synthase (iNOS) is expressed after challenge to the nervous system, it results in abnormally high concentrations of nitric oxide (NO). Under such conditions, NO could phosphorylate the eukaryotic translation initiation factor (eIF)-2alpha, thus suppressing protein synthesis in neurons that play a role in endocrine and autonomic functions. Using the Marmarou model of traumatic brain injury (TBI), we observed a rapid increase (at 4 h after TBI) of iNOS mRNA in magno- and parvocellular supraoptic and paraventricular neurons, declining gradually by approximately 30% at 24 h and by approximately 80% at 48 h. Western analysis indicated a trend towards increased iNOS protein synthesis at 4 h, which peaked at 8 h, and tended to decrease at the later time points. At the same time points, we detected immunocytochemically the phosphorylated form of eIF-2alpha (eIF-2alpha[P]) as cytoplasmic and more often as nuclear labeling. The incidence of double-labeled [iNOS and eIF-2alpha(P)] neuronal profiles, particularly at 24 h and 48 h after TBI, was high. De novo protein synthesis assessed quantitatively after infusion of 35S methionine/cysteine was reduced by approximately 20% at 4 h, remained depressed at 24 h, and did not return to control levels up to 48 h following the trauma. The results suggest that iNOS may trigger phosphorylation of eIF-2alpha, which in turn interferes with protein synthesis at the translational (ribosomal complex) and transcriptional (chromatin) levels. The depression in protein synthesis may include downregulation of iNOS itself, which could be an autoregulatory inhibitory feedback mechanism for NO synthesis. Excessive amounts of NO may also participate in dysfunction of hypothalamic circuits that underlie endocrine and autonomic alterations following TBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.