Abstract

BackgroundChronic obstructive pulmonary disease (COPD) is an inflammatory disorder marked by relative resistance to steroids. The IL-17 superfamily, which mediates cross-talk between the adaptive and innate immune systems, has been associated with diminished responses to steroids. Increasing evidence supports elevated IL-17 expression in the lung of COPD subjects. However, whether cells of the immune system (systemic) and/or local lung cells are contributing to the elevated IL-17 remains unclear. To address this issue, we utilized a human parenchymal lung tissue explant culture system with cigarette smoke exposure to investigate the expression of IL-17 and the mechanisms involved.MethodsParenchymal lung tissue removed from 10 non-COPD and 8 COPD patients was sectioned and cultured with different concentrations of cigarette smoke extract (CSE) for 3 or 6 hours. Tissue viability was evaluated by LDH (lactate dehydrogenase) in culture supernatants. Western blot and real-time PCR were performed to evaluate IL-17A/F expression. To investigate the mechanisms, pharmacological inhibitors for MAPK p38, ERK1/2, NF-κB and PI3K pathways were added into the culture media.ResultsNo tissue damage was observed after the cigarette smoke exposure for 3 h or 6 h compared with the control media. At the protein level, the expression of both IL-17A (2.4 ± 0.6 fold) and IL-17 F (3.7 ± 0.7 fold) in the tissue from non-COPD subjects was significantly increased by 5% of CSE at 3 h. For COPD subjects, IL-17A/F expression were significantly increased only at 6 h with 10% of CSE (IL-17A: 4.2 ± 0.8 fold; IL-17 F: 3.3 ± 0.8 fold). The increased expression of IL-17A/F is also regulated at the mRNA level. The inhibitors for NF-κB and PI3K pathways significantly inhibited CSE-induced IL-17A/F expression from lung tissue of non-COPD subjects.ConclusionsWe found the evidence that the expression of both IL-17A and IL-17 F is increased by the cigarette smoke exposure in explants from both non-COPD and COPD subjects, supporting that local lung cells contribute IL-17 production. The elevated IL-17A/F expression is dependent on NF-κB and PI3K pathways. These observations add to the growing evidence which suggests that Th17 cytokines play a significant role in COPD.

Highlights

  • Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder marked by relative resistance to steroids

  • We found that cigarette smoke exposure promoted IL-17A/F expression of lung explants from both COPD and non-COPD subjects quickly, suggesting parenchymal tissue is an important source of IL-17A/F in individuals who smoke

  • Viability of lung tissue explants lactate dehydrogenase (LDH) release in culture supernatant is a reliable index of cell injury [18,19,20], which we used to evaluate tissue viability after cigarette smoke exposure

Read more

Summary

Introduction

Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder marked by relative resistance to steroids. The IL-17 superfamily, which mediates cross-talk between the adaptive and innate immune systems, has been associated with diminished responses to steroids. Whether cells of the immune system (systemic) and/or local lung cells are contributing to the elevated IL-17 remains unclear. To address this issue, we utilized a human parenchymal lung tissue explant culture system with cigarette smoke exposure to investigate the expression of IL-17 and the mechanisms involved. Chronic obstructive pulmonary disease (COPD) is a progressive, irreversible chronic inflammatory disorder that is caused predominantly by cigarette smoking and is one of the leading causes of mortality globally [1]. Whether the elevation of IL-17 is dependent on the local lung immune and structural cells or the recruitment of systemic immune cells remains unclear

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.