Abstract

Bone morphogenetic proteins (BMPs) are secreted signaling molecules, which play a major role in kidney development and disease. Here, we show the existence of mRNA for BMP-2 and for the BMP receptors BMPR1A, BMPR1B, BMPRII, ACVR1A, ACVR2, and ACVR2B in differentiated mouse podocytes and the protein expression of BMPR1A in human glomerular podocytes. BMP-2 dose dependently increases the free cytosolic Ca(2+) concentration in podocytes proving the existence of a functional receptor in these cells. Recent data indicate that in a myoblastic cell line and in a breast cancer cell line, BMP-2 increases the expression of Id-1, a negative regulator of basic helix-loop-helix transcription factors, but the role of BMP-2 stimulated Id-1 expression in the kidney has not been further characterized. Here, we show that BMP-2 increases the expression of Id-1 in differentiated podocytes. To investigate a role of Id-1 for podocyte function, overexpression of Id-1 was induced in differentiated mouse podocytes. Id-1-overexpressing podocytes show an increased NADPH-dependent production of reactive oxygen species (ROS). This effect can be evoked by BMP-2 and can be antagonized by anti-Id-1 antisense oligonucleotides. The data indicate that BMP-2 may, via an increased expression of Id-1 and an increased generation of ROS, contribute to important cellular functions in podocytes. ROS supposedly play a major role in cell adhesion, cell injury, ion transport, fibrogenesis, angiogenesis and are involved in the pathogenesis of membranous nephropathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call