Abstract

Furosemide, which is used worldwide as a diuretic agent, inhibits sodium reabsorption in the Henle's loop, resulting in diuresis and natriuresis. Arginine vasopressin (AVP) is synthesized in the supraoptic nucleus (SON), paraventricular nucleus (PVN), and suprachiasmatic nucleus (SCN) of the hypothalamus. The synthesis AVP in the magnocellular neurons of SON and PVN physiologically regulated by plasma osmolality and blood volume and contributed water homeostasis by increasing water reabsorption in the collecting duct. Central AVP dynamics after peripheral administration of furosemide remain unclear. Here, we studied the effects of intraperitoneal (i.p.) administration of furosemide (20 mg/kg) on hypothalamic AVP by using transgenic rats expressing AVP-enhanced green fluorescent protein (eGFP) under the AVP promoter. The i.p. administration of furosemide did not affect plasma osmolality in the present study; however, eGFP in the SON and magnocellular divisions of the PVN (mPVN) were significantly increased after furosemide administration compared to the control. Immunohistochemical analysis revealed Fos-like immunoreactivity (IR) in eGFP-positive neurons in the SON and mPVN 90 min after i.p. administration of furosemide, and AVP heteronuclear (hn) RNA and eGFP mRNA levels were significantly increased. These furosemide-induced changes were not observed in the suprachiasmatic AVP neurons. Furthermore, furosemide induced a remarkable increase in Fos-IR in the organum vasculosum laminae terminals (OVLT), median preoptic nucleus (MnPO), subfornical organ (SFO), locus coeruleus (LC), nucleus of the solitary tract (NTS), and rostral ventrolateral medulla (RVLM) after i.p. administration of furosemide. In conclusion, we were able to visualize and quantitatively evaluate AVP-eGFP synthesis and neuronal activations after peripheral administration of furosemide, using the AVP-eGFP transgenic rats. The results of this study may provide new insights into the elucidation of physiological mechanisms underlying body fluid homeostasis induced by furosemide. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call