Abstract

Hyaluronic acid (HA) is a component of the Extra-cellular matrix (ECM), it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase) is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1) is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.

Highlights

  • Extra-cellular matrix (ECM) is closely correlated with tumor progression

  • These results demonstrated that pcDNA3.1-HYAL1 was up-regulated and effectively

  • Our results showed that upregulation of HYAL1 resulted in cell growth increase in vitro and in vivo (Fig. 2, 7A and 7B)

Read more

Summary

Introduction

Extra-cellular matrix (ECM) is closely correlated with tumor progression. Hyaluronic acid (HA) is a component of the ECM, it is an unsulfated anionic linear glycosaminoglycan polymer comprised of a repeating glucuronic acid and N-acetylglucosamine disaccharide motif [1]. HA actively regulates cell adhesion, migration, and proliferation by interacting with specific cell surface receptors such as CD44 and RHAMM [4]. Small fragments of HA, generated by Hyaluronidase (HAase), stimulate angiogenesis [11,12]. In tumor tissues, it may promote tumor growth and metastasis probably by actively supporting tumor cell migration and offering protection against immune surveillance [13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call