Abstract
Cellular defence against accumulation of toxic xenobiotics includes metabolism by phase I and II enzymes and export of toxicants and their metabolites via ATP-binding cassette (ABC) transporters. Liver gene expression of representatives of these three protein groups was examined in a population of multixenobiotic-resistant killifish ( Fundulus heteroclitus) from the Sydney Tar Ponds, Nova Scotia, Canada. The Tar Ponds are heavily polluted with polycyclic aromatic hydrocarbons, polychlorinated biphenyls and heavy metals. The relationship among ABC transporters ABCB1, ABCB11, ABCC2, ABCG2, phase I enzyme cytochrome P4501A1 (CYP1A1) and phase II enzyme glutathione- S-transferase (GST-mu) was investigated by quantifying hepatic transcript abundance. In Tar Pond killifish, hepatic mRNA expression levels of ABCC2, ABCG2, CYP1A1 and GST-mu were elevated compared to reference sites, suggesting that hydrophobic contaminants undergo phase I and II metabolism and are then excreted into the bile of these fish. Hepatic ABCB1 and ABCB11 mRNA were not up-regulated in Tar Pond fish compared to two reference sites, indicating that these two proteins are not involved in conferring multixenobiotic resistance to Tar Pond killifish. The results suggest instead that liver up-regulation of phase I and II enzymes and complementary ABC transporters ABCC2 and ABCG2 may confer contaminant resistance to Tar Pond fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.