Abstract

This study was designed to determine whether a high-salt diet would alter endothelial function and, if so, the relative contributions of endothelium-derived hyperpolarizing factor (EDHF) and nitric oxide (NO) to any changes in vasomotor responses. Male Dahl salt-sensitive (DS) rats were given either a high-salt diet (8% NaCl, DS-H) or a low-salt diet (0.4% NaCl, DS-L) for 6 weeks. Membrane potentials and contractile responses were recorded from the isolated superior mesenteric arteries. After salt loading, DS-H developed hypertension, while DS-L remained normotensive. No difference was found in acetylcholine (ACh)-induced, endothelium-dependent relaxation between the groups. However, after treatment with indomethacin and NO synthase inhibitor, EDHF-like relaxation was significantly greater in DS-H than in DS-L. In contrast, NO-mediated relaxation was significantly smaller in DS-Hthan in DS-L. Iberiotoxin (IbTx), a specific blocker of large-conductance calcium-dependent potassium (BKCa) channels, attenuated EDHF-like relaxation in DS-H but not in DS-L. IbTx marginally inhibited EDHF-mediated hyperpolarization only in DS-H. Endothelium-independent relaxation in response to sodium nitroprusside or levcromakalim was similar in both groups. In conclusion, EDHF-like relaxation is upregulated through the activation of BKCa channels in the mesenteric arteries of DS-H. As the overall relaxation in response to ACh did not differ between the groups, the upregulation of EDHF appears to compensate for the loss of NO in the mesenteric arteries of DS-H.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.