Abstract

Transforming Growth Factor β (TGFβ) proteins are potent inducers of the epithelial-mesenchymal transition (EMT) in tumor cells. Although mitogen-activated protein kinase (MAPK) family has been shown to be involved in TGFβ-induced EMT, role of Dual Specificity Phosphatases (DUSP), key regulators of MAPK activity, in TGFβ-induced EMT is largely unkonwn. Real-time qPCR analyses were performed to determine the effect of TGFβ1 on expression of EMT genes and DUSP proteins in the non-small cell lung cancer model A549 and pancreatic adenocarcinoma model PANC1 cells. Western blot analyses were conducted to study the changes in protein levels of EMT proteins and select DUSP proteins, as well as phosphorylations of MAPK proteins upon TGFβ1 stimulation. Small interfering RNA (siRNA) was utilized to reduce expressions of DUSP genes. We observed that the EMT phenotype coincided with increases in phosphorylations of the MAPK proteins ERK1/2, p38MAPK, and JNK upon TGFβ1 stimulation. Real-time qPCR analysis showed increases in DUSP15 and DUSP26 mRNA levels and Western blot analysis confirmed the increase in DUSP26 protein levels in both A549 and PANC1 cells treated with TGFβ1 relative to control. Silencing of DUSP26 expression by siRNA markedly suppressed the effect of TGFβ1 on E-cadherin and mesenchymal genes in the cells. Data provided suggest that TGFβ1 modulates the expression of DUSP genes and that upregulation of DUSP26 may be required for TGFβ1-promoted EMT in A549 and PANC1 cells. Further studies should be carried out to elucidate the requirement of individual DUSPs in TGFβ1-associated EMT in tumor cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call