Abstract

Intact myenteric ganglia from 4- to 10-day-old rats were isolated from the small intestine. The preparations were cultured overnight, and drugs were applied within this time frame (20 h). Whole cell patch-clamp technique was used to measure basal membrane potential and carbachol-induced depolarization at neurons within these ganglia. Pretreatment with TNF-alpha (100 ng/ml) hyperpolarized the membrane (from -31.0 +/- 2.7 mV under control conditions to -61.2 +/- 3.2 mV in the presence of the cytokine) and potentiated the depolarization induced by carbachol (from 5.2 +/- 0.7 mV under control conditions to 27.5 +/- 2.0 mV in the presence of the cytokine). These effects were mimicked by carbocyclic thromboxane A2 (10(-6) mol/l), a stable thromboxane A2 agonist. The TNF-alpha action was inhibited by 1-benzylimidazole (2 x 10(-4) mol/l), a thromboxane synthase inhibitor, and BAY U 3405 (5 x 10(-4) mol/l), an inhibitor of thromboxane receptors. Measurements of thromboxane production in the supernatant of the culture revealed an increased concentration of thromboxane B2, the stable metabolite of thromboxane A2, after exposure to TNF-alpha. Immuncytochemical staining for cyclooxygenase-2 (COX-2) and the neuronal marker microtubule-associating protein-2 revealed an upregulation of COX-2 in myenteric neurons after exposure to the cytokine. These results demonstrate the involvement of COX-2 and the subsequent production of thromboxane A2 in the presence of TNF-alpha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.