Abstract
Phenotypic transformation of smooth muscle cells (SMCs) to the synthetic state in vitro and in human coronary atherosclerosis is reported to be associated with upregulation of connexin43 gap junctions. To determine whether cellular interactions mediated by gap junctions participate in the phenotypic transformation of SMCs in arterial injury and disease in general and to establish the spatial and temporal pattern of any such change in relation to neointimal development, we investigated SMC connexin43 gap junction expression during vascular healing in the rat carotid artery after balloon catheter injury. Quantitative immunoconfocal microscopy was applied to localize and to quantify connexin43 gap junctions 1, 3, 9, and 14 days after injury. Parallel studies were conducted by electron microscopy (direct morphological demonstration of SMC gap junctions) and immunoconfocal microscopy (localization of altered actin expression). Synthetic-state SMCs in the neointima (first apparent from 9 days postinjury) revealed abundant expression of gap junctions, with levels of immunodetectable connexin43 threefold greater than those of medial cells. However, the first detectable changes were found in the media, before neointimal formation; at 1 to 3 days postinjury, an increase in SMC gap junction expression was apparent in the innermost (subluminal) zone, the major site from which the cells subsequently found in the neointima are recruited. We conclude that upregulation of connexin43 gap junctions is intimately linked to SMC phenotypic transition and that interactions mediated by gap junctions may be a hitherto unrecognized contributor to the cellular mechanisms underlying the vascular response to injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.