Abstract

The mechanisms by which mature myeloid cells are released from the bone marrow into the peripheral blood are not clearly understood. Glycosylation is likely to play an important role, as has been shown in the homing of lymphocytes to lymph nodes and of neutrophils to inflamed endothelia. Cell surface sialylation is an important component of many cellular adhesive interactions, both as ligand-promoting interactions, as occurs in selectin and sialoadhesin-mediated adhesion, and for reducing cell adhesion as in some cancer cells. We have studied the expression of cell surface alpha2,6-linked sialic acid in the maturation of normal bone marrow myeloid cells, the expression of alpha2,6-sialyltransferase mRNA, and the role of sialylation in the adherence of myeloid cells to bone marrow stroma. Our data show that there is a dramatic increase in cell surface alpha2,6-sialylation during the late stage of maturation. This up-regulation is restricted to specific glycoproteins including CD11b and CD18. It is associated with a relative increase in the level of alpha2,6-sialyltransferase mRNA compared with alpha2,3-sialyltransferase mRNA. The changes in mature bone marrow myeloid cells are associated with reduced cell binding to fibronectin and cultured bone marrow stroma. Our data strongly suggest that alpha2,6-sialylation may be important in the interaction between maturing myeloid cells and bone marrow stroma and may govern the release of cells from the bone marrow into the peripheral blood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call