Abstract

BackgroundActivins are members of the TGF-ß superfamily of growth factors. First, we identified by expression array screening that activin-B and follistatin are upregulated in human idiopathic pulmonary fibrosis (IPF). Next, we wanted to clarify their specific role in lung fibrosis formation.MethodsWe used specific antibodies for activin-A and -B subunits and follistatin to measure and localize their levels in idiopathic pulmonary fibrosis and control lung biopsies. To inhibit activin signaling, we used soluble activin type IIB receptor fused to the Fc portion of human IgG1 (sActRIIB-Fc) in two different mouse models of pulmonary fibrosis.ResultsActivin-B and follistatin mRNA levels were elevated in the human IPF lung. Immunoreactivity to activin-A, -B and follistatin localized predominantly to the hyperplastic, activated alveolar epithelium, but was also seen in inflammatory cells. Mice treated with sActRIIB-Fc showed increased skeletal muscle mass and a clear reduction in alveolar cell counts in bronchoalveolar lavage fluid, but no significant antifibrotic effect in the lung was observed.ConclusionsThe upregulation of activin-B and follistatin in IPF is a novel finding. Our results indicate that activin inhibition is not an efficient tool for antifibrotic therapy, but could be useful in reducing alveolar cellular response to injury. Activin-B and follistatin levels may be useful as biomarkers of IPF.

Highlights

  • Activins are members of the Transforming growth factor-ß (TGF-ß) superfamily of growth factors

  • We found that activin-B and follistatin mRNA were upregulated in the idiopathic pulmonary fibrosis (IPF) lung

  • We identified an increase in the immunoreactivity of activin-A, -B and follistatin in the pathological, hyperplastic epithelium in the human IPF lung

Read more

Summary

Introduction

Activins are members of the TGF-ß superfamily of growth factors. First, we identified by expression array screening that activin-B and follistatin are upregulated in human idiopathic pulmonary fibrosis (IPF). The clinical course of IPF is unpredictable; some patients develop acute worsening of the disease with no Activins belong to the TGF-ß superfamily of growth factors and are composed of two inhibin ß subunits. They signal mainly through activin type I and II transmembrane serine/threonine kinase receptors (ActRI and II) inducing Smad signaling pathways [7]. Both activin-A and -B signal through either ActRII or ActRIIB, as type II receptor and a common type I receptor known as ActRIB, or activin-like kinase 4 (ALK-4) to activate the Smad2/3 pathway. It is important to distinguish between the relative roles of these two activins and their inhibitors in different tissue and disease entity contexts

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call