Abstract

The inhibitory effects of the angiotensin-converting enzyme (ACE)-ANG II-angiotensin type 1 (AT₁) receptor axis on jejunal glucose uptake and the reduced expression of this system in type 1 diabetes mellitus (T1DM) have been documented previously. The ACE2-ANG-(1-7)-Mas receptor axis is thought to oppose the actions of the ACE-ANG II-AT₁ receptor axis in heart, liver, and kidney. However, the possible involvement of the ACE2-ANG-(1-7)-Mas receptor system on enhanced jejunal glucose transport in T1DM has yet to be determined. Rat everted jejunum and Caco-2 cells were used to determine the effects of ANG-(1-7) on glucose uptake and to study the ACE2-ANG-(1-7)-Mas receptor signaling pathway. Expression of target gene and protein in jejunal enterocytes and human Caco-2 cells were quantified using real-time PCR and Western blotting. T1DM increased jejunal protein and mRNA expression of ACE2 (by 59 and 173%, respectively) and Mas receptor (by 55 and 100%, respectively) in jejunum. One millimolar ANG-(1-7) reduced glucose uptake in jejunum and Caco-2 cells by 30.6 and 30.3%, respectively, effects that were abolished following addition of 1 μM A-779 (a Mas receptor blocker) or 1 μM GF-109203X (protein kinase C inhibitor) to incubation buffer for jejunum or Caco-2 cells, respectively. Finally, intravenous treatment of animals with ANG-(1-7) significantly improved oral glucose tolerance in T1DM but not control animals. In conclusion, enhanced activity of the ACE2-ANG-(1-7)-Mas receptor axis in jejunal enterocytes is likely to moderate the T1DM-induced increase in jejunal glucose uptake resulting from downregulation of the ACE-ANG II-AT₁ receptor axis. Therefore, altered activity of both ACE and ACE2 systems during diabetes will determine the overall rate of glucose transport across the jejunal epithelium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.