Abstract

BackgroundDengue virus, a mosquito-borne flavivirus, is the etiological agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It generally induces apoptosis in mammalian cells, but frequently results in persistent infection in mosquito cells. That mechanism remains to be explored. In turn, a genomic survey through subtractive hybridization (PCR-select cDNA subtraction) was conducted in order to find gene(s) that may play a role in interactions between the virus and its host cells.ResultsThrough this technique, we identified a novel eukaryotic translation initiation factor 5A (eIF5A) which is upregulated in Aedes albopictus-derived C6/36 cells infected by the type 2 dengue (Den-2) virus. The full-length of the identified eIF5A gene consisted of 1498 bp of nucleotides with a 41.39% G+C content, and it possessed a higher similarity and shorter evolutionary distance with insects than with other organisms. Upregulation of eIF5A in response to Den-2 virus infection was validated at both the RNA and protein levels. This phenomenon was also observed by confocal microscopy. In addition, cell death obviously occurred when eIF5A activity was inhibited in C6/36 cells even when they were infected by the virus. However, viral multiplication was not obviously affected in infected C6/36 cells when eIF5A activity was reduced.ConclusionsTaken together, we postulated that eIF5A plays a role in preventing mosquito cells from death in response to Den-2 viral infection, thus facilitating continued viral growth and potential persistent infection in mosquito cells. It would be worthwhile to further investigate how its downstream factors or cofactors contribute to this phenomenon of dengue infection.

Highlights

  • Dengue virus, a mosquito-borne flavivirus, is the etiological agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome

  • Viruses invading a host cell redirect cellular processes to meet the needs of viral propagation [8], leading to the induction of novel changes in gene expressions; this was reported in human umbilical vein endothelial cells infected with dengue virus [9]

  • Full-length sequence and phylogenetic analysis of eukaryotic translation initiation factor 5A (eIF5A) derived from Ae. albopictus Full-length eIF5A derived from Ae. albopictus consists of 1498 bp of nucleotides with a 41.39% G+C content and possesses an 85.8% similarity with that from Ae. aegypti (AY433334)

Read more

Summary

Introduction

A mosquito-borne flavivirus, is the etiological agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It generally induces apoptosis in mammalian cells, but frequently results in persistent infection in mosquito cells. The dengue virus is transmitted between humans by mosquitoes, implying that both mammalian and mosquito cells are susceptible to the virus [4]. Mammalian cells with dengue virus infection usually end up Hypothetically, viruses invading a host cell redirect cellular processes to meet the needs of viral propagation [8], leading to the induction of novel changes in gene expressions; this was reported in human umbilical vein endothelial cells infected with dengue virus [9]. The path to maturation for the dengue virus may depend on the cell type, leading to unique characteristics of the virus

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call