Abstract

Glucokinase (GK) plays a critical role in controlling blood glucose; GK activators have been shown to stimulate insulin secretion acutely both in vitro and in vivo. Sustained stimulation of insulin secretion could potentially lead to β-cell exhaustion; this study examines the effect of chronic GK activation on β-cells. Gene expression and insulin secretion were measured in rodent islets treated in vitro with GKA71 for 72 h. Key β-cell gene expression was measured in rat, mouse and global GK heterozygous knockout mouse islets (gk(del/wt)). Insulin secretion, after chronic exposure to GKA71, was measured in perifused rat islets. GKA71 acutely increased insulin secretion in rat islets in a glucose-dependent manner. Chronic culture of mouse islets with GKA71 in 5 mmol/l glucose significantly increased the expression of insulin, IAPP, GLUT2, PDX1 and PC1 and decreased the expression of C/EBPβ compared with 5 mmol/l glucose alone. Similar increases were shown for insulin, GLUT2, IAPP and PC1 in chronically treated rat islets. Insulin mRNA was also increased in GKA71-treated gk(del/wt) islets. No changes in GK mRNA were observed. Glucose-stimulated insulin secretion was improved in perifused rat islets following chronic treatment with GKA71. This was associated with a greater insulin content and GK protein level. Chronic treatment of rodent islets with GKA71 showed an upregulation of key β-cell genes including insulin and an increase in insulin content and GK protein compared with glucose alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.